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A Full-Wave Analysis of an Arbitrarily Shaped

Dielectric Waveguide Using Green’s

Scalar Identity

J. Charles, H. Baudrand, and D. Bajon

Abstruct —An integral equation analysis is proposed to determine the
phase constant of an arbitrarily shaped dielectric waveguide. The main

feature of this approach is the use of Green’s scalar identity in which

only simple contour integrals have to be evaluated. Different scalar
Green’s functions are considered to satisfy the bounda~ conditions for
the electric and magnetic fields in each region. This approach is com-
bined with the boundary element technique with linear elements for the
computation. The case of the rectangular dielectric image waveguide is
first discussed, and numerical results are found to be consistent with

other theories and experiments. ALso, the cases of hollow rectangular

and semicircular image waveguides are analyzed and numerical results

are presented.

I. INTRODUCTION

The principal reason for the renewed interest in dielectric

image lines is that the metallic wall structures cause attenuation

owing to the skin effect in the range from millimeter to optical

waves. Thus dielectric guiding structures are more suitable for

millimeter-wave integrated circuits than microstrip transmission

lines. A number of theoretical studies of dielectric image wave-

guides have been presented in recent years [1]–[10]. Most of

those methods are currently based on effective dielectric con-

stant approximations or use accurate mode-matching techniques

for their analysis. Schlosser et al. [1], Marcatili [2], and Goell [3]

were the first to use accurate mode-matching techniques. Miao

et al. [10] proposed a simple effective dielectric constant ap-

proach to analyze dielectric waveguides and hollow rectangular

image guides.

Kazuhiko [5] and Solbach et al. [6] presented a calculation of

the field distribution and phase constant of rectangular dielec-

tric image lines. More recently, domain integral equation meth-

ods have been proposed [13]–[15]. Pichot [13] gave an exact

numerical solution based on vector integral equations to investi-

gate the diffused channel waveguide. Kolk et al. [15] used a

domain integral equation representation in which the kernel of

the integral consists of a dyadic Green’s function to study

integrated optical channel and ridge waveguides in stratified

media. Bagby et al. [14] presented a polarization electric field

integral equation; a Herztian potential Green’s dyadic was used

as the kernel of the integral for studying a generalized inte-

grated dielectric waveguiding system.

The main feature of our proposed method is the use of

Green’s scalar identity and scalar Green’s functions in which the

transverse components of the electric and magnetic fields

are expressed in terms of their longitudinal components for the

analysis of the general structure shown in Fig. 1. Unlike the

integral methods given in [13]–[151, our formulation is developed

so as to use only simple contour integrals in the equations. This

theoretical approach is combined with the bounda~ element

technique with linear elements for the computation. Similar
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Fig. 1. Cross-sectional view of the waveguide to be analyzed: (1) and

(2) are electric boundaries; (3) and (4) are magnetic or electric bound-
aries.

numerical methods have been proposed [11], [12] for the analysis

of waveguide discontinuities; also, boundary element techniques

were developed by Brebbia in his two books [17], [18].

After subdividing the boundary (c) of the dielectric into

segments, a linear variation of the electric and magnetic fields is

assumed on each element. The equations are then combined to

form a single matrix equation. Since the electric and magnetic

fields do not satisfy the same boundary condition, two sets of

scalar Green’s functions are considered in each region of the

structure. By imposing the condition that the determinant of the

matrix be zero, the unknown phase constant is determined.

Some infinite series present in the Green’s functions have to be

approximated for the numerical evaluation. Another advantage

of this approach is that the shape of the waveguide may be

arbitrary.

By this method various guiding structures have been studied

and we have compared our results with other numerical tech-

niques and with approximate solutions available in the litera-

ture. To illustrate the capability of this approach we also

demonstrate the dispersion characteristics of a hollow semicircu~

lar dielectric image waveguide.

II. FORMULATION OF THE PROBLEM

The general geometry of the analyzed structure is shown in

Fig. 1. The subscript i =1,2 refers to regions I and II. The

Green’s functions corresponding to each region (1 and H) are

defined by G,; these must satisfy the inhomogeneous Helmhohz

equation:

(V:+ k:-~2)G,(r/r’) = -c3(r -T-’), k:=OJ21..Loe,(1)

where P is the unknown phase constant, and k, is the wavenum-

ber in the dielectric regions. The quantities El and E2 are the

permittivities in regions I and II respectively and ~0 is the

permeability of free space. The boundary conditions in the

domain DI are either the homogeneous Neumann conditions

@Y/&z = O or the Dirichlet condition Y = O. If @P/dn = O, then

the potential W is the longitudinal component Hz of the mag-

netic field. We then choose GI so that dGl /dn = O on the limits

of the domain D1. If V = O, the potential V is the longitudinal

component E= of the electric field: G,= O on the bounclary

of D1.

The choice of the Green’s function will not be the same for

the electric and the magnetic field (see Appendix I). In region I

the normal n is oriented from region I toward II. The scalar

0018-9480 /91/0600-1029$01 .00 01991 IEEE



1030 IEEE TRANSACTIONS ON MICROWAVE THEDRY AND TECHNIQUES, VOL. 39, NO. 6, JUNE 1991

k
n

z

\

D2 t

\

Fig. 2. Orientation of the direct coordinate system.

potential * satisfies the propagation equation:

(v:+ k:-@)v=o

and from Green’s formula we have

The partial normal and tranverse derivatives are denoted by

8.. and df,. The Green’s functions corresponding to the electric

and magnetic fields are denoted by G. and G~ respectively.

Then, in the domains I and II we can write

E== deil(dnEz)i – ~eL2Ez and Hz = dhll(dnHz)z – @h,2Hz.

In the above e~uations ($e,~,1 and G., ~,z are the following

operators:

~.,,,i=~G.,,i(r/r’)dl and G.,h,,.=~nGe ~i(r\r]dl.
1 1’

The tangent to the boundary separating regions I and II is

oriented so that the (n, t, z) coordinate system is direct (see Fig.

2). The divergence theorem shows that the signs of the integrals

in domain I must change; the expressions for the longitudinal

electric and magnetic fields are then given by

E== (–l)L[&l(d~EZ), –~Ez] (2)

Hz= (-l) fd@nHz), –~Hz] . (3)

From Maxwell’s equations we can define the transverse compo-

nents of the electric and magnetic fields ET and HT:

From the continuity of the electric and magnetic fields on the

interface of the two regions, ET I = ET2 and HT1 = HT2, the

following expressions can be obtained:

adt Ez + bl(dn Hz)l+ b2(dnHz)2 = O (4)

aat Hz + cl(anEz)l+ c2(a. Ez)~ = o (5)

where the coefficients a, bl, bz, cl, and C2 are given by

1
bz=–jwp~

k2 –/12

1 1
c1 = jwel ,

ki – &
and cz= jwe2—

k:–~z”

For transferring (2) and (3) from region I to region II we have to

express (dnHz)l and (dnE=)l in terms of (d,H,)z and (dnE.)z by

using (4) and (5):

(anHz),= – ;( ,,2 a Hz)2– ;(W, ) (6)

(anEz), = -:(anEz)2- ;(atHz). (7)

Substituting (6) iand (7) into expressions (2) and (3), we obtain

the following matrix:

(1+ !5.22) o -6.21 0

0 (,1+G,,) o - G*,
1

“1I
Ez

Hz

anE=
= O (8)

a,,H=

III. GREEN’S FUNCTIONS

l%e Green’s functions of domain I are calculated to satisfy

the boundary conditions for G. and G~. We give two expres-

sions for these functions, which have been computed for the

case of two finite ground planes with consideration given to

electric and magnetic sidewalls (see Appendix I). In the case of

infinite ground planes the corresponding Green’s function is

given by (9). In this expression the series converges very slowly:

G=jII ~ [H~2)(klr -r~l)+H~)(klr -r~l)] (9)

n=—-

where

r; = aX[2nh + .xO] + aYy O r~=aX[2nh – xO]+aYyO.

In the above relations h is the distance between the two ground
2 _ k 2 _ ~Z, and H~7-j is the zero-order Hankel func-planes, k – ,

tion of the second kind. These series can be approximated by

the following expressions when kh >>1:

2

G ‘Xp ()
– j~m exp(2jkh@– jkx)O1(xO) (10)

where ~l(xO) = cos(kxO) for Gk and @l(.xO) = sin(kxO) for G..

In domain II the Green’s function is given by

– ;I&)(kr)

(see [111 and [171).

IV. NUMERICAL IMPLEMENTATION

Consider NM points on the contour of the dielectric with

coordinates denoted by x~ and y~. In this case, the contour iS

divided into N~ subintervals, where the mth segment is defined

by the coordinates x~, y~ and x~ ~ ~, y., ~ ~. It will be convenient
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Fig. 3. The ith subinterval on the contour of the dielectric.

to make the following definition:

xNm+~=x~ and YIVWZ+l=Y1.

Also, we can describe the mth segment as a set of x(t) and y(t)
functions defined by two parametric equations:

x(t) =x~+tsinf)~ (Ila)

y(f)= ym+tcosom (llb)

with – dm /2 < t< dm /2 (see Fig. 3).

Considering the above definitions, we suppose that the un-

known functions (Ez, Hz, dnEz, dnH=) vary linearly over the seg-

ment. These functions, denoted by V, are then defined by the

nodal points Vm, ~~ + I and the interpolation functions by
@l= 1/2(1 – t) and @z= 1/2(1+ t). So T can be expressed in

the folIowing form:

[ 1’~(x>Y)= [@’1>%]~w~. (12)
m+l

The final system to be computed is given in Appendix II.

V. NUMERICAL RESULTS

In this section we present some numerical results of various

dielectric waveguides. This method was applied to analyze sev-

eral structures with finite ground planes (Fig. 4) and infinite

ground planes (Figs. 6 and 7). In the case of a structure having

infinite ground planes, and when the values of hk are much

greater than the wavelength (A) (about hk - lOOA), the Green’s

function given by (9) can be approximated by expression (10).

Therefore, very fast convergence of the series is obtained. For

structures with finite ground planes, expressions (13) and (14)

are used.

A Gaussian elimination technique is used for the evaluation

of the determinant of the equation matrix given in Appendix II.

The calculation of, our problem was performed on a HP

personal computer. The dimension of the matrix equation is

equal to 4n, where n is the number of subintervals used to

describe the contour of the dielectric. The dispersion character-

istics corresponding to the three lowest order, modes of the

rectangular dielectric image line are shown in Fig. 4. Good

accuracy in the results of the phase constant compared with

those given by Solbach [6] and Marcatili [2] has been obtained.

The convergence of our numerical results for the structure of

Fig. 4 has been investigated by increasing the number of seg-

ments. The variation of the phase constant of the dominant

mode with respect to the number of segments has been demon-

strated in Fig. 5. From this figure it was found that by taking

four segments, the error in the results was less than 1.8%

compared with those reported in [6].

The hollow image guides (Fig. 6 and 7) have a number of

interesting characteristics for millimeter-wave applications. For

instance, the hollow core may be used to control the propaga-

tion constant without altering the exterior dimensions of these

guides. It is well known that above a certain frequency tlhere

exists symmetric and antisymmetric modes. They can be re-

garded as two strongly coupled image guides.

The dispersion characteristics of the first dominant modes of

the rectangular hollow image guide (Fig. 6) were computed. The

discrepancy between our results and those presented by [toh

and Miao [10] is approximately less than 2%. The reasons for

this difference have been explained in [10]. But our numerical

results are found to be consistent with those presented in [16]

using the transverse operator technique. We have also studied

circular dielectric structures. The propagation constants of the

dominant and first odd mode of a hollow semicircular dielectric

image guide are plotted in Fig. 7. About 12 segments were used

to compute the dispersion characteristics for this structure.

VI. CONCLUSION

A full-wave analysis using domain integral equations for the

study of an arbitrarily shaped dielectric waveguide has been

presented. The approach was combined with the boundary ele-

ment technique with linear elements for the computation. We

have demonstrated the capability and accuracy of our apprc~ach

by comparing our numerical results with those available in the

literature. We have noticed that even by taking a small number

of segments for describing the contour of the dielectric, good

accuracy in the results was obtained. Further, the convergence

test for the numerical results obtained for a simple structure has

been carried out. However, in order to reduce the computation

time for the analysis of more complicated structures, series that

converge more rapidly have been determined. In addition, this

method can be used to analyze various structures. For ex~mple,

shielded microstrip lines and field effect transistor structures

are being analyzed by this approach after introducing two lmew

equations for the conductors.

APPENDIX I

The Green’s functions corresponding to the electric field, G,,

and magnetic field, G~, are given in the following form (see

[19]):

G,(xoYo/xY)

-n:l:O.(y) (sh(e~x)sh(f)~(x o-b)), X <X.
(13)

sh(fjm( x-b) )sh(o. xo)~ X>xo

Gh(xoyo/xy)

= ; ~O,(Y)

{

ch(o~x)ch(fl.(xo -b)), x ~xo ~14)

ch(f)~(x –b))ch(f3~xo), X >Xo~=1 w

where

(jn = !uan ()if : ‘(~z–k~)>l
P

On = i!K~n

P
if (:)’(B’-k?)<l
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If magnetic sidewalls are assumed for the structure, then the

functions @~ and @~ can be expressed in the form

Oe(y)=cospny @~,(y) =sinfl. y.

But in the case of electric sidewalls 0, and @l, will be

APPENDIX II
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E;

E;+l 1
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Eigenvalues for Ridged and Other Waveguides

Containing Corners of Angle 3T /2 or 2T

by the Finite Element Method

B. Schiff

Abstract —Superelements have heen developed to enable the finite

element method to be nsed for computing eigenvalues of the Laplaciau
over domains containing reentrant corners of angle 3 ~ /2 or 2 m. The
superelements embody mesh refinement and include basis functions

which emulate the singular behavior of the solution at the corner. Being
compatible with linear or bilinear elements, the superelements are easily

incorporated into standard finite element programs. The method has

been used to compute TE and TM mode eigenvalues for ridged and
other wavegnides, and the results agree well with those obtained rising
various other methods.

I. INTRODUCTION

Ridged and other waveguides whose cross sections contain

one or more reentrant corners of angle 3T /2 or 2T are fre-

quently used in microwave devices and circuits. It is therefore
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