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A Full-Wave Analysis of an Arbitrarily Shaped
Dielectric Waveguide Using Green’s
Scalar Identity

J. Charles, H. Baudrand, and D. Bajon

Abstract —An integral equation analysis is proposed to determine the
phase constant of an arbitrarily shaped dielectric waveguide. The main
feature of this approach is the use of Green’s scalar identity in which
only simple contour integrals have to be evaluated. Different scalar
Green’s functions are considered to satisfy the boundary conditions for
the electric and magnetic fields in each region. This approach is com-
bined with the boundary element technique with linear elements for the
computation. The case of the rectangular dielectric image waveguide is
first discussed, and numerical results are found to be consistent with
other theories and experiments. Also, the cases of hollow rectangular
and semicircular image waveguides are analyzed and numerical results
are presented.

I. INTRODUCTION

The principal reason for the renewed interest in dielectric
image lines is that the metallic wall structures cause attenuation
owing to the skin effect in the range from millimeter to optical
waves. Thus dielectric guiding structures are more suitable for
millimeter-wave integrated circuits than microstrip transmisson
lines. A number of theoretical studies of dielectric image wave-
guides have been presented in recent years [1]-[10]. Most of
those methods are currently based on effective dielectric con-
stant approximations or use accurate mode-matching techniques
for their analysis. Schlosser et al. [1], Marcatili [2], and Goell [3]
were the first to use accurate mode-matching techniques. Miao
et al. [10] proposed a simple effective dielectric constant ap-
proach to analyze dielectric waveguides and hollow rectangular
image guides.

Kazuhiko [5] and Solbach et al. [6] presented a calculation of
the field distribution and phase constant of rectangular dielec-
tric image lines. More recently, domain integral equation meth-
ods have been proposed [13]-[15]. Pichot [13] gave an exact
numerical solution based on vector integral equations to investi-
gate the diffused channel waveguide. Kolk ef al. [15] used a
domain integral equation representation in which the kernel of
the integral consists of a dyadic Green’s function to study
integrated optical channel and ridge waveguides in stratified
media. Bagby et al. [14] presented a polarization electric field
integral equation; a Herztian potential Green’s dyadic was used
as the kernel of the integral for studying a generalized inte-
grated dielectric waveguiding system.

The main feature of our proposed method is the use of
Green’s scalar identity and scalar Green’s functions in which the
transverse components of the electric and magnetic fields
are expressed in terms of their longitudinal components for the
analysis of the general structure shown in Fig. 1. Unlike the
integral methods given in [13]-[15], our formulation is developed
so as to use only simple contour integrals in the equations. This
theoretical approach is combined with the boundary element
technique with linear clements for the computation. Similar
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Fig. 1. Cross-sectional view of the waveguide to be analyzed: (1) and

(2) are electric boundaries; (3) and (4) are magnetic or electric bound-
aries.

numerical methods have been proposed [11], [12] for the analysis
of waveguide discontinuities; also, boundary element techniques
were developed by Brebbia in his two books [17], [18].

After subdividing the boundary (c) of the dielectric into
segments, a linear variation of the electric and magnetic fields is
assumed on each element. The equations are then combined to
form a single matrix equation. Since the electric and magnetic
fields do not satisfy the same boundary condition, two sets of
scalar Green’s functions are considered in each region of the
structure. By imposing the condition that the determinant of the
matrix be zero, the unknown phase constant is determined.
Some infinite series present in the Green’s functions have to be
approximated for the numerical evaluation. Another advaniage
of this approach is that the shape of the waveguide may be
arbitrary.

By this method various guiding structures have been studied
and we have compared our results with other numerical tech-
niques and with approximate solutions available in the litera-
ture. To illustrate the capability of this approach we also
demonstrate the dispersion characteristics of a hollow semicircu-
lar dielectric image waveguide.

II. ForMULATION OF THE PROBLEM

The general geometry of the analyzed structure is shown in
Fig. 1. The subscript i =1,2 refers to regions I and II. The
Green’s functions corresponding to each region (I and ) are
defined by G,; these must satisfy the inhomogeneous Helmholtz
equation:

(VE+k2=B2)G,(r/r)==8(r—1),  kZ=wuee, (1)
where B is the unknown phase constant, and k, is the wavenum-
ber in the dielectric regions. The quantities €; and €, are the
permittivities in regions I and II respectively and uq is the
permeability of free space. The boundary conditions in the
domain D, are either the homogeneous Neumann conditions
0¥ /dn = 0 or the Dirichlet condition ¥ = 0. If ¥ /dn = 0, then
the potential ¥ is the longitudinal component H, of the mag-
netic field. We then choose G| so that 4G /dn = 0 on the limits
of the domain D,. If ¥ =0, the potential ¥ is the longitudinal
component E_, of the electric field: G,=0 on the boundary
of D,.

The choice of the Green’s function will not be the same for
the electric and the magnetic field (see Appendix I). In region I
the normal # is oriented from region I toward II. The scalar
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Fig. 2. Orientation of the direct coordinate system.

potential ¥ satisfies the propagation equation:
(V24 k2= B2)¥ =0

and from Green’s formula we have
W(r) = [[G(r/r) (@), ~ ¥ (3,G)(r/r).] dl.
[of

The partial normal and tranverse derivatives are denoted by
d,- and 9,. The Green’s functions corresponding to the electric
and magnetic fields are denoted by G, and G, respectively.
Then, in the domains I and IT we can write

Ez = GAeil("nEz)i - GeL2Ez and Hz = Ghzl(anHz)z - GhzZHz'

In the above eduations ée,hzl and G, ,,, are the following
operators:

ée,hﬂ':'/;Ge,hf(r/r’)'dl and Ge,h12~=‘/l-anGe,hi(r/r’)'dl'

The tangent to the boundary separating regions I and II is
oriented so that the (n, t, z) coordinate system is direct (see Fig.
2). The divergence theorem shows that the signs of the integrals
in domain I must change; the expressions for the longitudinal
electric and magnetic fields are then given by

E, =(—1)l[éezl(anEz)1_é;Ez] (2)
H, = (=1)'[ G2 H,), ~ Gk, . ©)

From Maxwell’s equations we can define the transverse compo-
nents of the electric and magnetic fields E; and H:

1
Ep= m(—jﬂa,Ez + joud, H,)

H, jBd,H, + jwe,d,E,).

1

From the continuity of the electric and magnetic fields on the
interface of the two regions, E; = Er, and Hp = Hyp,, the
following expressions can be obtained:

aath + bl(anHz)1+ bZ(anHz)’.Z =0
aatHz + Cl(anEz)1+ CZ(anEz)’l =0

)
®)

where the coefficients a, b,, b,, ¢, and ¢, are given by

a=—jB (k%_klz) b =jw,u¥
- G-p7) MR
) 1
1 1
and

= jwelkz—
1

_ﬁl

Cy= jwezm .
2
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For transferring (2) and (3) from region I to region II we have to
express (9, H,), and (3,E.), in terms of (9,H,), and (3,E,), by
using (4) and (5):

b, a
(anHz)1= ﬁb_l(anHz)Z_b_z(ath) (6)

(anEz)1= _z—j(anEz)Z_Cil(atHz)' (7)

Substituting (6) and (7) into expressions (2) and (3), we obtain
the following matrix:

A a A CZ ~
(1-6,,) -—6G.9 -—G, 0
12 cl 11 cl 11
a , ~ by o
- b—lGhuaf (1 - Ghn) 0 - b_lGh“
(1+ ém) 0 -G, 0
0 (1+Gyy,) 0 —- Gy,
EZ
H | _ 0 (8
anE: - ( )
anHz

I11. GrEEN’S FUNCTIONS

The Green’s functions of domain I are calculated to satisfy
the boundary conditions for G, and G,. We give two expres-
sions for these functions, which have been computed for the
case of two finite ground planes with consideration given to
electric and magnetic sidewalls (see Appendix I). In the case of
infinite ground planes the corresponding Green’s function is
given by (9). In this expression the series converges very slowly:

G=j1 ¥ [HP(kIr—rl)+HP(klr - )]

n= —o

®)

where

ry=a[2nh+ x,]+a,y, r=a,2nh—xy]+a,y,.

In the above relations /4 is the distance between the two ground
planes, k2 =k2 — B2, and H{? is the zero-order Hankel func-
tion of the second kind. These series can be approximated by
the following expressions when kh > 1:

2
Vk3hwN

where ¢,(xy) =cos(kxy) for G, and ¢(x,) =sin(kxy) for G,.
In domain II the Green’s function is given by

exp(—j%ﬂ-) exp (2jkhVN — jkx)@(x,) (10)

- %Héz’(kr)
(see [11] and [17]).

IV. NUMERICAL IMPLEMENTATION

Consider N,, points on the contour of the dielectric with
coordinates denoted by x,, and y,,. In this case, the contour is
divided into N,, subintervals, where the mth segment is defined

by the coordinates x,,, y,, and x,,, 1, ¥,, 1. It will be convenient
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Xy+1: Yj+1

Fig. 3. The ith subinterval on the contour of the dielectric.

to make the following definition:

Tnme1 =X and Yy, 1=¥;.

Also, we can describe the mth segment as a set of x(¢) and y(¢)
functions defined by two parametric equations:

(11a)
(11b)

x(t)=x,, +tsind,,
y(t)=y, +tcosb,,

with —d,, /2<t<d,, /2 (see Fig. 3).

Considering the above definitions, we suppose that the un-
known functions (E,, H,,d,E,,d,H_) vary linearly over the seg-
ment. These functions, denoted by ¥, are then defined by the
nodal points ¥,, ¥, ., and the interpolation functions by
®,=1/2(1—1t) and ®,=1/2(1+1). So ¥ can be expressed in
the following form:

\I’(x,)’)=[q)1’®2][\1,qul]- (12)

The final system to be computed is given in Appendix II.

V. NumEeRricaL REesuLTs

In this section we present some numerical results of various
dielectric waveguides. This method was applied to analyze sev-
eral structures with finite ground planes (Fig. 4) and infinite
ground planes (Figs. 6 and 7). In the case of a structure having
infinite ground planes, and when the values of hk are much
greater than the wavelength (A) (about kk ~ 1001), the Green’s
function given by (9) can be approximated by expression (10).
Therefore, very fast convergence of the series is obtained. For
structures with finite ground planes, expressions (13) and (14)
are used.

A Gaussian elimination technique is used for the evaluation
of the determinant of the equation matrix given in Appendix II.

The calculation of our problem was performed on a HP
personal computer. The dimension of the matrix equation is
equal to 4n, where n is the number of subintervals used to
describe the contour of the dielectric. The dispersion character-
istics corresponding to the three lowest order modes of the
rectangular dielectric image line are shown in Fig. 4. Good
accuracy in the results of the phase constant compared with
those given by Solbach [6] and Marcatili [2] has been obtained.
The convergence of our numerical results for the structure of
Fig. 4 has been investigated by increasing the number of seg-
ments. The variation of the phase constant of the dominant
mode with respect to the number of segments has been demon-
strated in Fig. 5. From this figure it was found that by taking
four segments, the error in the results was less than 1.8%
compared with those reported in [6].
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The hollow image guides (Fig. 6 and 7) have a number of
interesting characteristics for millimeter-wave applications. For
instance, the hollow core may be used to control the propaga-
tion constant without altering the exterior dimensions of these
guides. It is well known that above a certain frequency there
exists symmetric and antisymmetric modes. They can be re-
garded as two strongly coupled image guides.

The dispersion characteristics of the first dominant modes of
the rectangular hollow image guide (Fig. 6) were computed. The
discrepancy between our results and those presented by [toh
and Miao [10] is approximately less than 2%. The reasons for
this difference have been explained in [10]. But our numerical
results are found to be consistent with those presented in [16]
using the transverse operator technique. We have also studied
circular dielectric structures. The propagation constants of the
dominant and first odd mode of a hollow semicircular dielectric
image guide are plotted in Fig. 7. About 12 segments were used
to compute the dispersion characteristics for this structure.

VI. ConcLusioN

A full-wave analysis using domain integral equations for the
study of an arbitrarily shaped dielectric waveguide has been
presented. The approach was combined with the boundary ele-
ment technique with linear elements for the computation. We
have demonstrated the capability and accuracy of our approach
by comparing our numerical results with those available in the
literature. We have noticed that even by taking a small number
of segments for describing the contour of the dielectric, good
accuracy in the results was obtained. Further, the convergence
test for the numerical results obtained for a simple structure has
been carried out. However, in order to reduce the computation
time for the analysis of more complicated structures, series that
converge more rapidly have been determined. In addition, this
method can be used to analyze various structures. For example,
shielded microstrip lines and field effect transistor structures
are being analyzed by this approach after introducing two new
equations for the conductors.

AppPENDIX I

The Green’s functions corresponding to the electric field, G,,
and magnetic field, G,, are given in the following form (see

[19):

G(%0yo /%)
2 v sh(6,x)sh(0,(x,—b)), x<x
_y Xy (0,%)sh (6,(xo b)) 0 (13)
o W sh(8,(x~b))sh(8,xy), x>x,
Gu(x0¥0/ %)
h
Z Yn ch(8,x)ch(8,(xy— b)), x<=x
- T 2o (o= 0)) X<y
ni W ch(6,(x~b))ch(6,xy), x=x,
where ‘
0,=—a, if(i)ﬂ(ﬁz—kf)>1
D nw
n 2
@=i—zan ﬁ(fi)(ﬁ2—kﬂ<n
D nw
2 cos B,y

2
Tw p 6,shé,b

R
It

-

p\? 5 272
1+(E) (k _kt)

nw

By=—
p
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Fig. 4. Normalized phase constant of the rectangular dielectric image waveguide versus the frequency for W/h=1
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If magnetic sidewalls are assumed for the structure, then the
functions ®, and @, can be expressed in the form

P,(y)=cos B,y ©,(y)=sinB,y.
But in the case of electric sidewalls ®, and @, will be

D, (y)=sinB,y D, (y)=cosB,y

AppenDIx 11
By using (12), (2), and (3) yield

N, El N, 13
N ~ g
Z (1_ 312) ,l - ZGeljlz[ﬁbl‘l’z] .
1= E:+1 1=1 7+1
N, 4
ey a a,E;
= L | —Gdi[¢19]
! ¢ ell 1%2 (9,,E;+1

L Gul-11] ,
+—GH[-
26’1 ell[ H

J+1

Il
(=

1

. Z le . A Ii]
Z (I_Gllallz)[ﬁblﬁbz] H - Z Gllz]12[¢1¢2]

=1 +1 J=1 H]l+1
L | Zepte0) 0
- —=Giuléid, .
j=1 bl l anI{jJrl
* -1 5 0
+ —Gin[ - =
26, hll[ 1 "
N, . E: N E;
Z (1+Gé122)[¢’1¢2] . + Gel]22[¢1¢2] .
1=1 +1 J=1 7+1
N [ 9,E!
- Z Gé]21[¢1¢2] 0 E =0
J=1 | “n a1l
N, [ . N, '
~ P A, 7
Z (1+G111l22)[¢>1¢:] . + Z Gilnld,] .
=1 _I_Iz+1 i=1 I-Ij—l-l
5 Gl
- Gihiléd, =0.
Jj=1 _an]_I/lJrl
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Eigenvalues for Ridged and Other Waveguides
Containing Corners of Angle 3 /2 or 27
by the Finite Element Method

B. Schiff

Abstract —Superelements have been developed to enable the finite
element method to be used for computing eigenvalues of the Laplacian
over domains containing reentrant corners of angle 3w /2 or 2=. The
superelements embody mesh refinement and include basis functions
which emulate the singular behavior of the solution at the corner. Being
compatible with linear or bilinear elements, the superelements are easily
incorporated into standard finite element programs. The method has
been used to compute TE and TM mode eigenvalues for ridged and
other waveguides, and the results agree well with those obtained using
various other methods.

I. INTRODUCTION

Ridged and other waveguides whose cross sections contain
one or more reentrant corners of angle 3w /2 or 27 are fre-
quently used in microwave devices and circuits. It is therefore
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